ON (2, *n*)-GROUPS RELATED TO FIBONACCI GROUPS

BY

C. M. CAMPBELL^a AND R. M. THOMAS^b

^aMathematical Institute, University of St. Andrews, St. Andrews KY 16 9SS, Scotland; and ^bDepartment of Computing Studies, University of Leicester, Leicester LE 1 7RH, England

ABSTRACT

In this paper, we study certain groups G generated by two elements a and b of orders 2 and n respectively subject to one further defining relation, and determine their structure. We also point out certain connections between these groups and the Fibonacci groups F(r, n).

1. Introduction

In this paper, we shall be interested in groups defined by presentations of the form:

$$\langle a, b: a^2 = b^n = w = 1 \rangle$$
,

where n > 1, w is a word in a and b, and the exponent sum of b in w is zero. The simplest such case would be:

$$\langle a, b: a^2 = b^n = ab^i ab^j = 1 \rangle$$

with i + j = 0, and such a group would be infinite if (i, n) > 1 or abelian of order 2n if (i, n) = 1. The next case would be:

$$\langle a, b: a^2 = b^n = ab^i ab^j ab^k = 1 \rangle$$

with i + j + k = 0. In this case, by replacing k by k + n, we may assume that i + j + k = n, and then our group is a homomorphic image of the group with presentation:

$$\langle a, b: a^2 = b^{2n} = ab^i a b^j a b^k = 1 \rangle,$$

Received September 1, 1986

Vol. 58, 1987

i.e. the group $H^{i,j,k}$, whose structure was determined in [2]. In this paper, we study the groups with presentations of the form:

$$\langle a, b: a^2 = b^n = ab^h ab^i ab^j ab^k = 1 \rangle,$$

where h + i + j + k = 0, and determine all the possibilities with h, i, j, k in $\{1, -1, 2, -2\}$. We also point out some connections between these groups and the *Fibonacci groups* F(r,n) with presentations:

$$\langle x_1, x_2, \dots, x_n : x_1 x_2 \cdots x_r = x_{r+1}, x_2 x_3 \cdots x_{r+1} = x_{r+2}, \dots, x_n x_1 x_2 \cdots x_{r-1} = x_r \rangle,$$

where the subscripts are taken to be reduced modulo n, and the semi-direct products E(r, n) of F(r, n) with the cyclic group of order n, which have presentations:

$$\langle b, c : bc^r = cb^r, b^n = 1 \rangle.$$

(See [3, 5, 6, 7] for further details.) The connection between groups of this form and the Fibonacci groups was also exploited in [9], where the groups with presentations:

$$\langle a, b: a^2 = b^n = abab^r ab^{-r} ab^{-1} = 1 \rangle$$

were shown to be infinite if (r + 1, n) > 3 or if (r + 1, n) = 3 with n even, and it was deduced that the Fibonacci groups F(r, n) are infinite in these cases.

The notation used in this paper is reasonably standard. We use |.| to denote either the order of a group or the modulus of an integer, the context hopefully making it clear as to which was intended. If G and H are groups, we let $G \times H$ denote the direct product and G * H the free product of G and H. For any group G, G' denotes the commutator subgroup of G, and, if x and y are elements of G, x^{y} denotes $y^{-1}xy$. We let C_n , D_n and E_n denote the cyclic, dihedral and elementary abelian groups respectively of order n, and A_n the alternating group of degree n. Lastly, (g_n) denotes the Lucas sequence of numbers defined inductively by:

$$g_1 = 1, \quad g_2 = 3,$$

 $g_n = g_{n-2} + g_{n-1} \quad (n > 2)$

and, for any integers a_1, a_2, \ldots, a_n , we let (a_1, a_2, \ldots, a_n) denote their highest common factor.

2. First reductions

In this section, we reduce the problem a little by pointing out certain isomorphisms between some of the groups under consideration. Let G(n; h, i, j, k) denote the group with presentation:

$$\langle a, b: a^2 = b^n = ab^h ab^i ab^j ab^k = 1 \rangle.$$

Then we first prove:

PROPOSITION 2.1. (i) If n is even and |h| = |i| = |j| = |k| = 2, then G(n; h, i, j, k) is infinite.

(ii) If n is odd and |h| = |i| = |j| = |k| = 2, then G(n; h, i, j, k) is isomorphic to G(n; h/2, i/2, j/2, k/2).

PROOF. (i) follows easily from adding the relation $b^2 = 1$ to:

$$\langle a, b: a^2 = b^n = ab^h ab^i ab^j ab^k = 1 \rangle$$

to get:

$$\langle a, b: a^2 = b^2 = 1 \rangle$$

which is a presentation for the infinite group $C_2 * C_2$. For (ii), if *n* is odd, replace *b* by $c = b^2$ to yield the presentation:

$$\langle a, c : a^2 = c^n = ac^{h/2}ac^{i/2}ac^{j/2}ac^{k/2} = 1 \rangle,$$

and hence the result.

PROPOSITION 2.2. G(n; h, i, j, k) is isomorphic to G(n; i, j, k, h).

The proof of this is immediate.

In view of Propositions 2.1 and 2.2, we may assume that h = 1 if we wish to determine which of the G(n; h, i, j, k) under consideration are finite. So let G(n; i, j, k) denote the group defined by the presentation:

$$\langle a, b: a^2 = b^n = abab^i ab^j ab^k = 1 \rangle.$$

We now have:

PROPOSITION 2.3. G(n; i, j, k) is isomorphic to G(n; k, j, i).

PROOF. The relation:

$$abab^i ab^j ab^k = 1$$

Vol. 58, 1987

(2, n)-GROUPS

is equivalent to:

$$ab^{-1}ab^{-k}ab^{-j}ab^{-i}=1.$$

Replacing b by b^{-1} yields the result.

In view of Proposition 2.3, we now have five possible cases to consider:

$$G(n; 1, -1, -1) \simeq G(n; -1, -1, 1),$$

$$G(n; 2, -1, -2) \simeq G(n; -2, -1, 2),$$

$$G(n; -1, 1, -1),$$

$$G(n; -2, 2, -1) \simeq G(n; -1, 2, -2),$$

$$G(n; 2, -2, -1) \simeq G(n; -1, -2, 2).$$

We shall deal with the first two cases in Section 3, and the remaining three cases in Sections 4 to 6 respectively.

3. The groups G(n; 1, -1, -1) and G(n; 2, -1, -2)

To investigate the structure of the groups G(n; 1, -1, -1) and G(n; 2, -1, -2), we first prove:

PROPOSITION 3.1. If (i, n) = (j, n) = 1, then the groups G(n; i, -1, -i) and G(n; j, -1, -j) are isomorphic and metabelian of order $2n^2$.

PROOF. Let us consider the group G = G(n; i, -1, -i) with presentation:

$$\langle a, b: a^2 = b^n = abab^i a b^{-1} a b^{-i} = 1 \rangle.$$

Let

$$a_1 = bab^{-1}, a_2 = b^2 a b^{-2}, \dots, a_{n-1} = b^{n-1} a b^{1-n},$$

 $N = \langle a, a_1, a_2, \dots, a_{n-1} \rangle$. Then N is normal in G of index n, and may be easily checked to have presentation:

$$\langle a, a_1, a_2, \dots, a_{n-1} : a^2 = a_1^2 = a_2^2 = \dots = a_{n-1}^2$$

= $aa_1a_{i+1}a_i = a_1a_2a_{i+2}a_{i+1} = \dots = a_{n-1}aa_ia_{i-1} = 1\rangle$,

where subscripts are reduced modulo n. The last n relations may be written in the form:

$$aa_1 = a_ia_{i+1}, a_1a_2 = a_{i+1}a_{i+2}, \ldots, a_{n-1}a = a_{i-1}a_i,$$

and, if (i, n) = 1, we have:

$$aa_1 = a_ia_{i+1} = a_{2i}a_{2i+1} = \cdots,$$

in other words:

(*)
$$aa_1 = a_1a_2 = a_2a_3 = \cdots = a_{n-2}a_{n-1} = a_{n-1}a_n$$

The action of b on N is determined by:

$$a \rightarrow a_1$$
$$a_1 \rightarrow a_2 = a_1 a a_1,$$

which is independent of i, thus showing that the structure of G is independent of i, and hence all such groups are isomorphic. The relations (*) give:

$$a_{2} = a_{1}aa_{1},$$

$$a_{3} = a_{2}(aa_{1}) = a_{1}(aa_{1})^{2},$$

$$a_{4} = a_{3}(aa_{1}) = a_{1}(aa_{1})^{3},$$

$$\vdots$$

$$a_{n-1} = a_{n-2}(aa_{1}) = a_{1}(aa_{1})^{n-2},$$

and then:

$$a = a_{n-1}aa_1 = a_1(aa_1)^{n-1},$$

in other words:

 $(aa_1)^n = 1.$

So N has presentation:

$$\langle a, a_1 : a^2 = a_1^2 = (aa_1)^n = 1 \rangle,$$

and is thus isomorphic to D_{2n} . Hence $|G| = 2n^2$, and, since [G, G'] = 2n, G' is isomorphic to C_n , and thus G is metabelian.

From Proposition 3.1, we may now deduce:

THEOREM 3.2. (i) G(n; 1, -1, -1) is metabelian of order $2n^2$. (ii) G(n; 2, -1, -2) is isomorphic to G(n; 1, -1, -1) for n odd. (iii) G(n; 2, -1, -2) is infinite for n even.

PROOF. Parts (i) and (ii) follow immediately from Proposition 3.1. As for

374

(iii), if n is even, then we may add the relation $b^2 = 1$ to the relations for G(n; 2, -1, -2) to get a homomorphic image with presentation:

$$\langle a, b : a^2 = b^2 = 1 \rangle$$

and hence the group is infinite.

4. The groups G(n; -1, 1, -1)

These groups are, in general, infinite, as is shown by:

THEOREM 4.1. (i) G(2; -1, 1, -1) is isomorphic to D_8 . (ii) G(3; -1, 1, -1) is isomorphic to $A_4 \times C_2$. (iii) G(n; -1, 1, -1) is infinite for n > 3.

PROOF. The group G(n; -1, 1, -1) has presentation:

$$\langle a, b: a^2 = b^n = abab^{-1}abab^{-1} = 1 \rangle$$

As in the proof of Proposition 3.1, let $a_1 = bab^{-1}$, $a_2 = b^2 a b^{-2}$, ..., $a_{n-1} = b^{n-1}ab^{1-n}$, $N = \langle a, a_1, \ldots, a_{n-1} \rangle$. Then N has presentation:

$$\langle a, a_1, a_2, \dots, a_{n-1} : a^2 = a_1^2 = a_2^2 = \dots = a_{n-1}^2$$

= $(aa_1)^2 = (a_1a_2)^2 = \dots = (a_{n-2}a_{n-1})^2 = (a_{n-1}a_n)^2 = 1$

If n = 2, then N has presentation:

$$\langle a, a_1, : a^2 = a_1^2 = (aa_1)^2 = 1 \rangle,$$

so that N is isomorphic to E_4 , and, since conjugation by b interchanges a and a_1 , G(2; -1, 1, -1) is isomorphic to D_8 . If n = 3, then N has presentation:

$$\langle a, a_1, a_2 : a^2 = a_1^2 = a_2^2 = (aa_1)^2 = (a_1a_2)^2 = (a_2a)^2 = 1 \rangle$$

so that N is isomorphic to E_8 . Let:

$$c_1 = aa_1, \quad c_2 = a_1a_2, \quad c_3 = aa_1a_2.$$

Then $bc_1b^{-1} = c_2$, $bc_2b^{-1} = c_1c_2$, and $bc_3b^{-1} = c_3$, so that

$$G(3; -1, 1, -1) = \langle c_1, c_2, b \rangle \times \langle c_3 \rangle$$

is isomorphic to $A_4 \times C_2$. If n > 3, we argue as in [9]; add the relations:

$$a_1 = a_3 = a_4 = a_5 = \cdots = a_{n-1} = 1$$

to those for N to get a homomorphic image with presentation:

$$\langle a, a_2 : a^2 = a_2^2 = 1 \rangle,$$

and hence the group is infinite.

5. The groups G(n; -2, 2, -1)

The groups G(n; -2, 2, -1) give us our second infinite class of finite groups:

THEOREM 5.1. G(n; -2, 2, -1) is metabelian and has order $2n(2^n - (-1)^n)/3$.

PROOF. Let G = G(n; -2, 2, -1) with presentation:

$$\langle a, b: a^2 = b^n = abab^{-2}ab^2ab^{-1} = 1 \rangle.$$

We introduce a generator $x = ab^{-1}ab$:

$$(a, b, x: a^2 = b^n = 1, x = ab^{-1}ab, abab^{-2}ab^2ab^{-1} = 1)$$

Using $a^2 = 1$, we may rewrite the last relation as:

$$b^{-2}ab^{2}ab^{-1}aba = 1,$$

i.e. $b^{-1}ab^{2} = bab^{-1}aba,$

i.e.
$$b^{-1}ab^{-1}ab^2 = (b^{-1}aba)^2$$
,

i.e. $b^{-1}xb = x^{-2}$,

so that G has presentation:

$$\langle a, b, x : a^2 = b^n = 1, x = ab^{-1}ab, b^{-1}xb = x^{-2} \rangle.$$

Let $N = \langle b, x \rangle$. Then $a^{-1}xa = x^{-1}$, $a^{-1}ba = bx^{-1}$, so that N is normal in G and [G:N] = 2. Working as in [5, Chapter 7], we derive a presentation for N via the coset representatives $\{1, a\}$. N is generated by elements of the form $uv(\overline{uv})^{-1}$, where $u \in \{1, a\}$, $v \in \{a, b, x\}$, and \overline{uv} is the element of $\{1, a\}$ such that $uv \in N\overline{uv}$. The relations for N are then all expressions of the form $uru^{-1} = 1$, where $u \in \{1, a\}$ and $r \in \{a^2, b^n, xb^{-1}aba^{-1}, b^{-1}xbx^2\}$. This gives generators $t = a^2$, b, $c = aba^{-1}$, x, $y = axa^{-1}$, and relations:

$$t = b^{n} = c^{n} = xb^{-1}c = yc^{-1}tbt^{-1} = b^{-1}xbx^{2} = c^{-1}ycy^{2} = 1$$

Eliminating the trivial generator t, we have as presentation for N:

$$\langle b, c, x, y : b^n = c^n = 1, c = bx^{-1}, y = b^{-1}c, b^{-1}xbx^2 = c^{-1}ycy^2 = 1 \rangle.$$

376

We eliminate $c = bx^{-1}$ to get:

$$\langle b, x, y : b^n = (bx^{-1})^n = 1, y = x^{-1}, b^{-1}xbx^2 = xb^{-1}ybx^{-1}y^2 = 1 \rangle.$$

We now eliminate $y = x^{-1}$ to get:

$$\langle b, x : b^n = (bx^{-1})^n = b^{-1}xbx^2 = xb^{-1}x^{-1}bx^{-3} = 1 \rangle.$$

The last relation is redundant via the penultimate, and we have:

$$\langle b, x : b^n = (bx^{-1})^n = 1, b^{-1}xb = x^{-2} \rangle.$$

The relation $(bx^{-1})^n$ may be rewritten as $(xb^{-1})^n$, and then as:

$$x \cdot b^{-1}xb \cdot b^{-2}xb^2 \cdots b^{-(n-1)}xb^{n-1} = 1,$$

which, in view of the last relation, is equivalent to:

$$x \cdot x^{-2} \cdot x^4 \cdot x^{-8} \cdot \cdot \cdot x^{(-2)^{n-1}} = 1,$$

i.e. $x^k = 1$, where:

$$k = |1 - 2 + 4 - 8 + \dots + (-2)^{n-1}|$$

= $(2^n - (-1)^n)/3.$

So N has presentation:

$$\langle b, x : b^n = x^k = 1, b^{-1}xb = x^{-2} \rangle,$$

and N is metacyclic of order nk. Thus G is metabelian of order 2nk as required.

NOTE 5.2. The group G = G(n; -2, 2, -1) has presentation:

$$\langle a, b: a^2 = b^n = 1, abab^{n-2} = bab^{n-2}a \rangle$$

Let c = aba, $M = \langle b, c \rangle$. Then M is normal in G of index 2, and has presentation:

$$\langle b, c : b^n = c^n = 1, cb^{n-2} = bc^{n-2} \rangle.$$

By Theorem 5.1, *M* is metacyclic of order *nk*, where $k = (2^n - (-1)^n)/3$. As in Section 1, let *F* be the Fibonacci group F(n-2, n), *E* be the group E(n-2, n), so that [E:F] = n. Then *E* has presentation:

$$\langle b, c: b^n = 1, cb^{n-2} = bc^{n-2} \rangle,$$

so that M is a homomorphic image of E. Now |F/F'| = (n-3)k (e.g. see [4, Corollary 4] or [5, Chapter 16, Theorem 7]), and hence |E/F'| = (n-3)nk.

So the normal closure of $\langle c^n \rangle$ in E has index nk in E and contains F' as a subgroup of index n-3.

6. The groups G(n; 2, -2, -1)

The groups G(n; 2, -2, -1) with n odd give us our third class of finite groups, but are, in general, infinite when n is even. More precisely, we have:

THEOREM 6.1. (i) G(2; 2, -2, -1) is isomorphic to E_4 . (ii) G(4; 2, -2, -1) is metabelian of order 40. (iii) G(n; 2, -2, -1) is infinite for *n* even, n > 4. (iv) G(n; 2, -2, -1) has order $2ng_n$ for *n* odd.

Before proving Theorem 6.1, we make some observations, similar to those made in Note 5.2 and [7, Section 4]. The group G(n; 2, -2, -1) has presentation:

$$\langle a, b: a^2 = b^n = 1, abab^2 = bab^2a \rangle.$$

As in 5.2, let c = aba, M be the normal subgroup $\langle b, c \rangle$ of index 2. Then M has presentation:

$$\langle b, c: b^n = c^n = 1, cb^2 = bc^2 \rangle,$$

which is a homomorphic image of the group E = E(2, n) with presentation:

$$(\$) \qquad \langle b, c : b^n = 1, cb^2 = bc^2 \rangle.$$

Now, if F = F(2, n), then F/F' has order g_n for n odd (see [3] or [5, Chapter 16, Exercise 4]), and so E/F' has order ng_n . Thus Theorem 6.1 (iv) gives that the normal closure of $\langle c^n \rangle$ in E is F' for n odd. Conversely, 6.1 (iv) may be derived from this fact. For if we let F have presentation:

$$\langle x_1, x_2, \ldots, x_n : x_1 x_2 = x_3, x_2 x_3 = x_4, \ldots, x_n x_1 = x_2 \rangle$$

and let b denote the automorphism of F defined by:

$$x_1 \rightarrow x_2, \quad x_2 \rightarrow x_3, \ldots, x_{n-1} \rightarrow x_n, \quad x_n \rightarrow x_1,$$

c denote bx_1^{-1} , then E = E(2, n) has presentation (\$) (see [5, Chapter 16] for example). The relation $c^n = 1$ then corresponds to $(bx_1^{-1})^n = 1$, i.e. to:

$$bx_1^{-1}b^{-1} \cdot b^2x_1^{-1}b^{-2} \cdot \cdot \cdot \cdot b^{n-1}x_1^{-1}b^{1-n} \cdot b^n \cdot x_1^{-1} = 1,$$

i.e., given that $b^n = 1$, to:

Vol. 58, 1987

i.e.

$$x_1 x_2 \cdots x_{n-1} x_n = 1.$$

 $x_n^{-1}x_{n-1}^{-1}\cdots x_2^{-1}x_1^{-1}=1.$

Now, since:

$$x_1x_2 = x_3, \quad x_2x_3 = x_4, \ldots, x_nx_1 = x_2,$$

abelianizing and multiplying these relations together yields:

i.e.
$$(\bar{x}_1 \bar{x}_2 \cdots \bar{x}_n)^2 = \bar{x}_1 \bar{x}_2 \cdots \bar{x}_n,$$
$$\bar{x}_1 \bar{x}_2 \cdots \bar{x}_n = 1$$

in $\overline{F} = F/F'$. So $x_1x_2 \cdots x_n \in F'$, and hence the normal closure D of $\langle c^n \rangle$ in E is contained in F'. If D were equal to F', then G would be an extension of E/F' by C_2 , and Theorem 6.1 (iv) would follow.

We should point out that the situation is quite different for n even. Here the relations:

$$b^n = 1, \qquad cb^2 = bc^2,$$

give:

$$(c^{-2}b)^{-1}b^{2}(c^{-2}b) = b^{-1}c(cb^{2}c^{-2})b$$
$$= b^{-1}cb^{2}$$
$$= c^{2},$$

so that $c^n = (c^2)^{n/2} = (c^{-2}b)^{-1}(b^2)^{n/2}(c^{-2}b) = 1$. So, for *n* even, G(n; 2, -2, -1) contains E(2, n) as a subgroup of index 2, and has derived subgroup isomorphic to F(2, n) with index 2*n*. Since F(2, 2) is trivial and F(2, 4) isomorphic to C_5 (see [3], [5, Chapter 16] or [7]), Theorem 6.1 (i) and (ii) now follow. Since F(2, n) is infinite for *n* even, n > 4 (see [1, 3, 8]), Theorem 6.1 (iii) also follows. It remains to prove (iv).

So let us now consider the group G = G(n; 2, -2, -1) with presentation:

$$\langle a, b: a^2 = b^n = abab^2ab^{-2}ab^{-1} = 1 \rangle$$

with *n* odd. Let $x = bab^{-1}a$, $y = ab^{-1}ab$, n = 2k - 1. Then the last relation gives:

$$ba \cdot b^2 \cdot ab^{-1} = (ab)^2,$$

and so $(ab)^{2k} = ba \cdot b^{2k} \cdot ab^{-1} = babab^{-1}$, so that:

$$(ab)^n = (ab)^{2k}(ab)^{-1} = babab^{-2}a.$$

Now $(ab)^{2n} = ba \cdot b^{2n} \cdot ab^{-1} = 1$, so that $(babab^{-2}a)^2 = 1$, i.e. $(bab^{-1}a \cdot ab^{-1}ab \cdot a)^2 = 1$, i.e. $(xya)^2 = 1$. Since:

$$axa = abab^{-1} = x^{-1},$$

 $aya = b^{-1}aba = y^{-1},$

we have that $xyx^{-1}y^{-1} = 1$, i.e. xy = yx.

Now the relation $abab^2ab^{-2}ab^{-1} = 1$ gives us that $y = b^2ab^{-2}a$. So $b^{-1}xb = y$, $b^{-1}yb = bab^{-2}ab = bab^{-1}a$. $ab^{-1}ab = xy$, and hence $N = \langle x, y \rangle$ is normal in G. Since $x^b = y$, $y^b = xy$ and $b^n = 1$, N is a homomorphic image of F. Since N is abelian, N is a homomorphic image of F/F'. But we already know that G is an extension of F/D by C_{2n} , where D is contained in F'. Hence D = F', and the result follows.

ACKNOWLEDGEMENTS

The authors would like to thank Dave Johnson for several helpful discussions; the second author would like to thank Hilary Craig for all her help and encouragement.

References

1. A. M. Brunner, *The determination of Fibonacci groups*, Bull. Austral. Math. Soc. 11 (1974), 11–14.

2. C. M. Campbell, H. S. M. Coxeter and E. F. Robertson, Some families of finite groups having two generators and two relations, Proc. Roy. Soc. London 357A (1977), 423-438.

3. J. H. Conway et al., Solution to advanced problem 5327, Amer. Math. Monthly 74 (1967), 91-93.

4. D. L. Johnson, A note on the Fibonacci groups, Israel J. Math. 17 (1974), 277-282.

5. D. L. Johnson, *Presentations of groups*, London Math. Soc. Lecture Notes 22, Cambridge University Press, 1976.

6. D. L. Johnson, *Topics in the theory of group presentations*, London Math. Soc. Lecture Notes **42**, Cambridge University Press, 1980.

7. D. L. Johnson, J. W. Wamsley and D. Wright, *The Fibonacci groups*, Proc. London Math. Soc. 29 (1974), 577-592.

8. R. C. Lyndon, unpublished.

9. R. M. Thomas, Some infinite Fibonacci groups, Bull. London Math. Soc. 15 (1983), 384-386.