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ABSTRACT 

In this paper, we study certain groups G generated by two elements a and b of 
orders 2 and n respectively subject to one further defining relation, and 
determine their structure. We also point out certain connections between 
these groups and the Fibonacci groups F(r, n). 

I. Introduction 

In this paper,  we shall be interested in groups defined by presenta t ions  o f  the 

form: 

( a , b : a E = b " = w =  l ) ,  

where n > 1, w is a word  in a and  b, and  the exponent  sum o f b  in w is zero. The  

simplest  such case would be: 

( a ,  b : a 2 = b" = ab iab  j = 1 ) 

with i + j  = 0, and  such a group would be infinite i f ( i ,  n ) >  1 or abelian o f  

order  2n if  (i, n) = 1. The  next case would be: 

( a ,  b : a 2 = b" = abiabJab k = 1 ) 

with i + j  + k = 0. In this case, by replacing k by k + n, we may  assume that  

i + j  + k = n, and then our  group is a h o m o m o r p h i c  image o f  the group with 

presentat ion:  

( a ,  b : a 2 = b 2" = abiabJab k = 1 ),  
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i.e. the group H id 'k  , whose structure was determined in [2]. In this paper, we 

study the groups with presentations of  the form: 

(a, b : a 2 = b n = abhab'abJab k = 1 ) ,  

where h + i + j + k = O, and determine all the possibilities with h, i, j ,  k in 

{ 1, - l, 2, - 2}. We also point out some connections between these groups 

and the Fibonacci groups F(r,n) with presentations: 

( X l ,  X 2 ,  • . . , X n  : X l X  2 "  • . X r  : X r  + i ,  

X 2 X 3  " " " X r  + l = X r  + 2 . . . . .  X n X l X 2  " " ° X  r -  1 = X r  ) , 

where the subscripts are taken to be reduced modulo n, and the semi-direct 

products E(r, n) of F(r, n) with the cyclic group of  order n, which have 

presentations: 

(b ,c :bc~=cb~,b"  = I). 

(See [3, 5, 6, 7] for further details.) The connection between groups of  this 

form and the Fibonacci groups was also exploited in [9], where the groups with 

presentations: 

(a, b: a 2 = b" = abab~ab-~ab -~ = 1) 

were shown to be infinite i f ( r  + 1, n) > 3 or i f(r  + 1, n) = 3 with n even, and 

it was deduced that the Fibonacci groups F(r, n) are infinite in these cases. 

The notation used in this paper is reasonably standard. We use I. I to denote 
either the order of  a group or the modulus of  an integer, the context hopefully 

making it clear as to which was intended. If G and H are groups, we let G × H 

denote the direct product and G • H the free product of G and H.  For any 

group G, G' denotes the commutator subgroup of  G, and, if x and y are 

elements of  G, x y denotes y-~xy.  We let C,, D, and E, denote the cyclic, 

dihedral and elementary abelian groups respectively of  order n, and A, the 

alternating group of  degree n. Lastly, (g,) denotes the Lucas sequence of 

numbers defined inductively by: 

g x = l ,  gz=3 ,  

g . = g . _ z + g . _ ~  ( n > 2 ) ,  

and, for any integers a~, a: . . . . .  a~, we let (a~, a2, • • . ,  a,)  denote their highest 

common factor. 
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2. First reductions 

In this section, we reduce the problem a little by pointing out certain 

isomorphisms between some of the groups under consideration. Let 

G(n; h,  i , j ,  k)  denote the group with presentation: 

(a, b : a 2 = b" = abhabiabJab k = 1 ). 

Then we first prove: 

PROPOSITION 2.1. (i) I f  n is even and  I h l = l i I = IJ I = l k I = 2, then 

G(n; h, i , j ,  k)  is infinite. 

(ii) I f n  is o d d a n d  Ihl = Iil = IJl = Ikl = 2 ,  then G ( n ; h , i , j , k )  is iso- 
morphic to G(n; h/2, i /2 , j /2 ,  k/2). 

PROOF. (i) follows easily from adding the relation b 2 = 1 to: 

to get: 

(a,  b : a 2 = b" = abhabiabJab k = 1 ) 

( a , b : a 2 = b  2= 1), 

which is a presentation for the infinite group C2 * C2. For (ii), if n is odd, 

replace b by c = b 2 to yield the presentation: 

(a,  c : a 2 = c n = a c h / 2 a c i / 2 a c J / 2 a c  k /2  = 1 ) ,  

and hence the result. 

PROPOSITION 2.2. G(n; h, i , j ,  k)  is isomorphic to G(n; i , j ,  k ,  h). 

The proof of  this is immediate. 

In view of Propositions 2.1 and 2.2, we may assume that h = 1 if we wish to 

determine which of  the G(n; h, i , j ,  k)  under consideration are finite. So let 

G(n; i , j ,  k)  denote the group defined by the presentation: 

(a,  b : a 2 = b" = ababiabJab k = 1 ). 

We now have: 

PROPOSITION 2.3. G(n; i , j ,  k)  is isomorphic to G(n; k , j ,  i). 

PRoov. The relation: 

ababiatflab k =  l 
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a b - l a b - k a b - J a b - i  = 1. 

Replacing b by b -  ~ yields the result. 

In view of  Proposi t ion 2.3, we now have five possible cases to consider: 

G(n:  1, - I, - 1)'-- G(n;  - 1, - 1, 1), 

G(n;  2, - 1, - 2 ) - - -G(n ;  - 2 ,  - 1,2), 

G(n;  - 1, 1, - 1), 

G(n;  - 2 , 2 ,  - 1)---G(n;  - 1,2,  - 2 ) ,  

G ( n ; 2 ,  - 2 ,  - 1)--~G(n; - 1, - 2 , 2 ) .  

We shall deal with the first two cases in Section 3, and the remaining three 

cases in Sections 4 to 6 respectively. 

3. T h e  groups  G(n; 1, - 1, - 1) and  G(n; 2, - 1, - 2)  

To investigate the structure o f  the groups G ( n ; 1 , -  1 , - 1 )  and 

G(n;  2, - 1, - 2), we first prove: 

PROPOSmON 3.1. I f ( i ,  n)  = (j,  n)  = 1, then the  groups  G(n;  i, - 1, - i)  

a n d  G(n  ; j ,  - 1, - j )  are  i somorphic  a n d  me tabe l ian  o f  order  2n 2. 

us consider  the group G = G ( n ; i ,  - 1 ,  - i )  with PROOF. Let 

presentation:  

Let 

(a ,  b" a 2 = b" = a b a b i a b - t a b  - i  = 1). 

. . . .  = b , - l a b l - , ,  al = bab - I ,  a2 = b2ab -2, a,,-1 

N -- (a ,  al, a2 . . . . .  an - i). Then  N is normal  in G o f  index n, and  may  be easily 

checked to have presentation: 

( a ,  al ,  a2 . . . . .  a n - l " a  2 = a  2 = a  2 . . . . .  a 2 - ,  

= aa~ai+xai = ala2ai+2ai+~ . . . . .  an_~aa,ai_~ = 1), 

where subscripts are reduced modulo  n. The  last n relations may  be wri t ten in 

the form: 

a a l  ---- a~ai+ 1, a i d 2  ---- a i + l a i + 2 ,  . . . , a n - l a  - ~  a i - l a i ,  
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and, if  (i, n) = 1, we have: 

aa~ = a i a i  + i ~ "  a2 ia2 i  + l . . . .  , 

in other  words: 

( . )  aa~ = ala2 = a2a3 . . . . .  a n - 2 a n -  1 = a n -  ~a. 

The action of  b on N is de termined by: 

a - -"  a l  

a 1 ~ a 2 ~ a l a a  D 

which is independent  of  i, thus showing that the structure of  G is independent  

o f  i, and hence all such groups are isomorphic. The relations (,)  give: 

a 2  = a laa t ,  

a3 = a2(aaO = a l ( a a O  2, 

a4 = a3(aaO = a l (a a l )  3, 

and then: 

in other words: 

So N has presentation: 

a n - ,  = a n - 2 ( a a , )  = a l (aa , )  n -  2, 

a = a n -  laal  = a l (aaO n - ', 

(aa l )  n = 1. 

( a ,  a l "  a 2 = a 2 = ( a a O  n = 1) ,  

and is thus isomorphic to D2n. Hence I G I = 2n2, and, since [G, G'] = 2n, G' is 

isomorphic to Cn, and thus G is metabelian. 

From Proposition 3. I, we may now deduce: 

THEOREM 3.2. (i) G ( n ;  1, - 1, - 1) is  m e t a b e l i a n  o f  o rder  2n 2. 
(ii) G ( n ;  2, - 1, - 2) is  i s o m o r p h i c  to  G ( n ;  1, - 1, - 1 ) f o r  n odd .  

(iii) G ( n ;  2, - 1, - 2) is i n f i n i t e  f o r  n e v e n .  

PROOF. Parts (i) and (ii) follow immediately  from Proposition 3.1. As for 
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(iii), i f  n is even,  t hen  we m a y  a d d  the  re la t ion  b 2 -- 1 to  the  r e l a t ions  fo r  

G ( n ;  2, - 1, - 2) to  get a h o m o m o r p h i c  i m a g e  wi th  p re sen t a t i on :  

( a ,  b"  a 2 =  b 2 =  1), 

a n d  hence  the  g roup  is infinite.  

4. T h e  groups  G ( n ;  - 1, 1, - 1) 

These  g roups  are,  in general ,  infinite,  as is s h o w n  by: 

THEOREM 4.1. (i) G(2;  --  1, 1, - 1 ) i s  i s o m o r p h i c  to  Ds .  

(ii) G(3;  - 1, 1, - 1) is  i s o m o r p h i c  t o A 4  × C2. 

(iii) G ( n ;  - 1, 1, - 1) is  i n f i n i t e  f o r  n > 3. 

PROOF. T h e  g roup  G ( n ;  - 1, 1, - 1) has  p re sen ta t ion :  

( a ,  b " a 2 = b n = a b a b  - l a b a b  -1  = 1) .  

As in the  p r o o f  o f  P r o p o s i t i o n  3.1, let al = b a b  -1 ,  a 2 = b 2 a b  -2  . . . .  , a n - i  = 

b n - l a b  ~-~,  N = ( a ,  a~ , .  . . ,  a n _ ~ ) .  T h e n  N h a s  p re sen t a t i on :  

( a ,  a l ,  a2, . . a n - t "  a 2 a 2 a~ = _ z • , = = . . . .  a n - i  

= (aa l )  2 = (ala2)  2 . . . . .  ( a n - 2 a n -  1) 2 ~ -  ( a n -  la)  2 ---- 1). 

I f  n ----- 2, t hen  N has  p re sen ta t ion :  

( a ,  a l , "  a 2 = a 2 = ( a a l )  2 = 1 ) ,  

so tha t  N is i s o m o r p h i c  to E4, and ,  s ince c o n j u g a t i o n  b y  b in t e rchanges  a a n d  

a~, G(2;  - 1, 1, - 1) is i s o m o r p h i c  to  D8. I f n  = 3, t hen  N h a s  p re sen t a t i on :  

( a ,  al ,  a2" a 2 = a 2 = a 2 = (aa l )  2 = (ala2) 2 = (a2a )  2 = 1), 

so tha t  N is i s o m o r p h i c  to E8. Let: 

ct = a a l ,  C2 = ala2,  c3 = aala2 .  

T h e n  b c l b  -~ = c2, bc2b -~ = c~c2, a n d  bc3b -~ = c3, so tha t  

G(3;  - 1, 1, - 1) = (cl, c2, b )  X (c3) 

is i s o m o r p h i c  to  A4 X C2. I f  n > 3, we a rgue  as in [9]; a d d  the  re la t ions:  

al = a3 = a4-----a5 . . . .  = a n _  1 = 1 

to  those  for  N to  get a h o m o m o r p h i c  i m a g e  wi th  p re sen ta t ion :  
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Ca, a2" a 2=a22= 1), 

and hence the group is infinite. 

5. The groups G ( n ;  - 2, 2, - 1) 

The groups G ( n ;  - 2, 2, - 1) give us our second infinite class o f  finite 
groups: 

THEOREM 5.1. G ( n ;  - 2, 2, - 1) is  m e t a b e l i a n  a n d  has  o rder  

2n(2" - ( - 1)")/3. 

PROOF. Let G = G ( n ;  - 2, 2, - 1) with presentation: 

Ca, b" a 2 =  b" = a b a b - 2 a b 2 a b  - j  = 1). 

We introduce a generator x = a b -  lab: 

( a ,  b ,  x : a 2 = b" --  1, x = a b - l  a b ,  a b a b - 2 a b 2 a b  -~ = 1 ). 

Using a 2=  1, we may rewrite the last relation as: 

b - 2 a b Z a b - ~ a b a  = 1, 

i.e. b - Jab 2 = bab  - ~aba, 

i.e. b - J a b  - l a b 2  = (b  - J a b a )  2, 

i.e. b - ~xb = x - z ,  

so that G has presentation: 

Ca, b ,  x : a 2 = b" = 1, x = ab  - l a b ,  b - ~xb = x - 2 ) .  

Let N = (b, x ) .  Then a - ~ x a  = x - l ,  a - l b a  = b x  -~, so that N is normal in G 

and [G : N] = 2. Working as in [5, Chapter 7], we derive a presentation for N 

via the coset representatives { 1, a }. N is generated by elements o f  the form 

u v ( u v ) - l ,  where u ~ { 1, a }, v E {a, b, x}, and uv is the element of  ( 1, a } such 

that  uv ~_Nuv .  The relations for N are then all expressions of  the form 

u m  -1 = 1, where u E{1,  a} and r ~ _ { a  2, b" ,  x b - ~ a b a  - j ,  b - J x b x 2 } .  This gives 

generators t = a 2, b, c = aba  -1,  x ,  y = a x a  - j ,  and relations: 

t = b" = c" = x b - l c  = y c - l t b t  -1 = b - ~ x b x  2 = c - l y c y  2 = 1. 

Eliminating the trivial generator t, we have as presentation for N: 

( b ,  c ,  x ,  y : b" = c" = 1, c = b x - 1 ,  y = b - t c ,  b - ~xbx  2 = c - J y c y  2 = 1 ). 
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We eliminate c = b x - ~  to get: 

( b ,  x ,  y :  b ~ = ( b x - t ) "  = 1, y = x -l ,  b - l x b x  2 = x b - l y b x - i y  2 = 1 ). 

We now eliminate y = x -  t to get: 

( b ,  x :  b ~ = ( b x - t )  ~ = b - i x b x  2 = x b - t x - l b x  -3  = 1 ). 

The last relation is redundant  via the penultimate, and we have: 

( b , x :  b" = ( b x - I )  n ----- 1, b - l x b  - -  x - 2 ) .  

The relation ( b x - l ) ~  may be rewritten as ( x b - ~ ) ~ ,  and then as: 

x .  b - l x b ,  b - 2 x b 2  . • • . .  b - t ~ - l ) x b  ~ - t  - -  1, 

which, in view of  the last relation, is equivalent to: 

x . x  - 2 . x  4 . x  - s . .  • . . x  t -2P-t  = 1, 

i.e. X k = 1 ,  where: 

k =  Jl - 2 + 4 - 8 +  . . .  + ( -  2)~-t I 

= ( 2  n - ( - 1 ) " ) / 3 .  

So N has presentation: 

( b , x :  b" = x  k = 1, b - t x b  = x - 2 ) ,  

and Nis  metacyclic of  order n k .  Thus G is metabelian of  order 2 n k  as required. 

NOTE 5.2. The group G = G ( n ;  - 2, 2, - 1) has presentation: 

( a ,  b : a 2 = b" = 1, abab"  -2  = bab"  -2a  ). 

M = (b, c).  Then M is normal  in G of  index 2, and has L e t  c = a b a ,  

presentation: 

(b, c : b ~ = c ~ = 1, cb ~-2 = b c n - 2 ) .  

By Theorem 5.1, M is metacyclic o f  order n k ,  where k = (2 ~ - ( - 1)~)/3. As 

in Section 1, let F be the Fibonacci group F ( n  - 2 ,  n ) ,  E be the group 

E ( n  - 2, n ) ,  so that [E : F]  = n. Then E has presentation: 

( b ,  c : b ~ = 1, cb ~-2 = bc  ~ - 2 ) ,  

so that  M is a homomorphic  image of  E.  Now I F / F '  I = (n  - 3)k (e.g. see [4, 

Corollary 4] or [5, Chapter 16, Theorem 7]), and hence I E / F ' I  = (n  - 3)nk. 
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So the normal closure of  (c n) in E has index nk  in E and contains F '  as a 

subgroup of  index n - 3. 

6.  T h e  g r o u p s  G(n; 2,  - 2 ,  - 1) 

The groups G(n;  2, - 2, - l) with n odd  give us our  third class of  finite 

groups, but  are, in general, infinite when n is even. More precisely, we have: 

THEOREM 6.1. (i) G(2; 2, - 2, - 1) is isomorphic  to E4. 

(ii) G(4; 2, - 2, - l) is metabel ian  o f  order 40. 

(iii) G(n;  2, - 2, - 1) is infinite for  n even,  n > 4. 

(iv) G(n;  2, - 2, - l) has order 2ngnfor  n odd.  

Before proving Theorem 6. l, we make some observations,  similar to those 

made  in Note  5.2 and [7, Section 4]. The group G(n;  2, - 2 ,  - 1 )  has 

presentation: 

( a,  b : a 2 - -  b ~ = 1, abab 2 = bab~a ). 

As in 5.2, let c = aba,  M b e  the normal subgroup (b,  c) of  index 2. Then M h a s  

presentation: 

(b ,  c : b" = c" = 1, cb 2 -= b e 2 ) ,  

which is a homomorphic  image of  the group E -- E(2,  n) with presentation: 

($) (b,  c:  b" = 1, cb 2 = bc2). 

Now, i f F  = F(2,  n), then F / F '  has order g, for n odd (see [3] or [5, Chapter  16, 

Exercise 4]), and so E / F '  has order ng, .  Thus Theorem 6.1 (iv) gives that the 

normal  closure of  (c n ) in E is F '  for n odd. Conversely, 6.1 (iv) may be derived 

from this fact. For if  we let F have presentation: 

(X l ,  X 2 , .  • . ,  X n : X l X  2 = X 3 ,  X 2 X 3  = X 4 , .  • . ,  XnX 1 = X2) , 

and let b denote the au tomorphism of  F defined by: 

X I ' - - ~ X 2 ,  X 2 - ' ~ X 3 ~  ° . . , X n _ l - " ~ X n ~  X n - " - ~ X l ,  

c denote bx{ -~, then E = E(2, n) has presentation ($) (see [5, Chapter  16] for 

example). The relation c" = 1 then corresponds to (bx{-1), = l, i.e. to: 

bx;- lb  - l  . b2x ( - l b -2 .  . . .  . b " - l x ( - l b  1-~ . b" .  x(- '  = 1, 

i.e., given that b n -- 1, to: 



Vol. 58, 1987 (2, n)-GROUPS 379 

i . e .  

Now, since: 

x #  t x # J l ' ' ' x 2  lx~- l = 1, 

X l X z ' ' ' X , - l X ,  = 1. 

X l X 2  ~-  X 3  , X2X3 -~- X 4 ,  • . . , X n X l  = X 2 ,  

abelianizing and multiplying these relations together yields: 

( X l X 2 .  . . x , )  2 = x ~ x 2 .  . . x , ,  
i.e. 

in F = F / F ' .  So XlX2" • . x ,  E F ' ,  and hence the normal closure D of (c") in E is 

contained in F'.  I fD  were equal to F' ,  then G would be an extension o f  E / F '  by 

C2, and Theorem 6.1 (iv) would follow. 

We should point out that the situation is quite different for n even. Here the 

relations: 

give: 

b" = 1, cb 2 = bc 2, 

( c -  2b ) - Ib2 (c -Zb)  = b - l c ( cb2c -~ )b  

= b - l c b 2  

C 2 ' 

so that c" =(c2)  " / : = ( c - 2 b ) - l ( b 2 ) ' / z ( c - 2 b ) =  1. So, for n even, 

G(n;  2, - 2, - 1) contains E(2, n) as a subgroup of  index 2, and has derived 

subgroup isomorphic to F(2, n) with index 2n. Since F(2, 2) is trivial and 

F(2, 4) isomorphic to C5 (see [3], [5, Chapter 16] or [7]), Theorem 6.1 (i) and 

(ii) now follow. Since F(2, n) is infinite for n even, n > 4 (see [1, 3, 8]), 

Theorem 6.1 (iii) also follows. It remains to prove (iv). 

So let us now consider the group G = G(n;  2, - 2, - 1) with presentation: 

(a ,  b : a 2 = b" = abab~ab-2ab  - l  = 1) 

with n odd. Let x = b a b - l a ,  y = a b - l a b ,  n = 2k - 1. Then the last relation 

gives: 

ba . b 2 . a b - l  = (ab )2, 

and so ( a b )  2g = ba .  b 2k . ab - l  = babab - l ,  so that: 

(ab )" = (ab )2k(ab ) - l  = b a b a b -  2a. 
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Now (ab ) 2n = ba . b 2n . ab-m = 1, so that ( b a b a b - 2 a )  2 -- 1, i.e. 

( b a b - t a .  a b - t a b ,  a) 2 = l, i.e. ( xya )  2 = 1. Since: 

axa  = a b a b - l  = x - l ,  

aya = b -  laba = y -  ~, 

we have that  x y x -  ly -  I = 1, i.e. x y  = y x .  

Now the relation abab~ab-2ab -J  = 1 gives us that y = bZab-2a.  So b -  ~xb = 

y ,  b - t y b  = b a b - 2 a b  = bab-~a  . a b - i a b  = x y ,  and hence N = ( x ,  y )  is nor- 

mal in G. Since x b = y ,  yb = x y  and b ~ = 1, N is a homomorphic  image of  F.  

Since N is abelian, N is a homomorphic  image of  F / F ' .  But we already know 

that  G is an extension of  F / D  by C2n, where D is contained in F ' .  Hence 

D = F ' ,  and the result follows. 
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